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In structural designs considering thermal loading, in addition to heat conduction within the structure, the
heat convection upon the structure’s surface can significantly influence optimal design configurations. In
this paper, we focus on the influence of design-dependent effects upon heat convection and internal heat
generation for optimal designs developed using a topology optimization scheme. The method for extract-
ing the structural boundaries for heat convection loads is constructed using a Hat function, and heat con-
vection shape dependencies are taken into account in the heat transfer coefficient using a surrogate
model. Several numerical examples are presented to confirm the usefulness of the proposed method.
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1. Introduction

For structural designs considering thermal loading, maximiza-
tion of temperature diffusivity in the structure is one of the most
important factors in reducing operating temperature and main-
taining product durability, in addition to the usual maximization
of stiffness that solutions to optimal design problems aim to
achieve. One way to obtain design solutions incorporating maximi-
zation of temperature diffusivity and stiffness is to apply a struc-
tural optimization method.

Topology optimization [1] has been primarily applied to struc-
tural problems and it is considered the most flexible structural
optimization method because it allows changes in topology as well
as shape. Most topology optimization studies focus on structural
problems such as stiffness maximization [2] and eigenfrequency
maximization [3].

Thermal problems have mainly been discussed in the context of
basic topology optimization theory using a homogenization meth-
od [4–7], due to their relatively simple constitutive equations.
Topology optimization methods based on the Solid Isotropic Mate-
rial with Penalization (SIMP) method [8] have been proposed and
applied to thermal problems [9]. Li et al. [10,11] extended the evo-
lutionary structural optimization (ESO) method [12] to fulfill shape
and topology design in steady-state heat conduction problems.
Gersborg-Hansen and Bendsøe [13] compared the optimization
results of two heat conduction problems that were solved by the
finite element method and finite volume method, respectively. Li
ll rights reserved.

: +81 749 52 6346.
et al. implemented a method for dealing with transient heat con-
duction for topology designs [14].Sigmund et al. investigated the
effects that thermal considerations have on material layout designs
and introduced concepts for dealing with heat transfer and electri-
cal conduction in the inherently metaphysical topology design
problems for micro-electromechanical (MEMS) systems [15]. On
the other hand, Zhuang et al. [16] developed level set-based topol-
ogy optimization methods for thermal problems, where the opti-
mization process was updated with so-called topological
derivatives, using the finite difference method.

In these previous conventional topology optimization methods,
due to the inability to precisely define structural boundaries in the
fixed design domain, boundary conditions such as heat transfer
boundary conditions, which should be set on the structural bound-
aries, could not be defined, and therefore, the design-dependent
effects of the heat transfer coefficients could not be considered.
Similar boundary condition problems for considering design-
dependent effects such as pressure loads, self-weight, and centrif-
ugal loads are also observed in the structural problems.

To overcome the issue of setting boundary conditions, Chen and
Kikuchi [17] proposed a way for dealing with design-dependent
effects for structural problems where pressure loads were set on
structural boundaries by using the fictitious fluid elements in the
void region of the fixed design domain, without setting pressure
loads on structural boundaries directly, so that design-dependent
effects concerning pressure loads can be treated during the optimi-
zation process. Bourdin and Chamblle [18] also proposed design-
dependent loads in topology optimization where a structure was
represented as a subset of reference domain, and the complement
of the subset was made of two other phases, the void and a
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Nomenclature

A area
aj interpolation expansion coefficient
b internal heat generation
Bi Biot number
bh descretized internal heat generation
D fixed design domain
F total potential energy
g volume
gj Radial Basis Function
h heat transfer coefficient
hh descretized heat transfer coefficient
h0 nodal heat transfer coefficient
h vector of heat transfer coefficient
H Hat function
H heat transfer vector
K coefficient of heat transmission
K thermal conduction matrix
Kh heat transfer matrix
l length
n the total number of nodes
Nr

i shape functions
Nu Nusselt number
m position of sampling points
Nr,Mr vector of shape functions
P fin period
Pr Prandtl number
q heat flux vector
qreact reaction of applied heat flux
Q internal heat generation vector

r design variable
rh descretized design variable
R vector of nodal design variables
Re Reynolds number
Ri design variables on nodes
Rupp upper bound of design variables
S area
T temperature
T temperature vector
~T virtual temperature
Tamb ambient temperature
x position in the fixed design domain
y position in the micro structure
Y unit cell area

Greek symbols
Cq heat flux boundary
Ch heat convection boundary
CT temperature boundary
e size of bandwidth in Hat function
j thermal conduction tensor
jH homogenized thermal conduction tensor
k thermal conductivity
q node density
qe element density
n characteristic temperature filed
vX characteristic function
Xd original design domain
Xs upper limit of volume constrain
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fictitious liquid that exerted a pressure load on its interface with
the solid structure. For heat conduction problems, Gao et al [19]
investigated and compared design-dependent effects using ESO,
but did not consider heat convection problems. Yoo and Kim pro-
posed the Element Connectivity Parameterization (ECP) method
[20] to consider design-dependent effects for thermal problems
with heat transfer boundaries, but this leads to theoretical incon-
sistencies with continuum mechanics. Ryu and Kim [21], and Bruns
[22] proposed a way to extract the structural boundaries of ther-
mal problems, but did not consider shape dependencies with
respect to heat transfer coefficients.

To solve the above issues concerning the setting of boundary
conditions for thermal problems, we propose a new topology opti-
mization method for thermal problems having generic thermal
boundary conditions such as heat flux, heat convection and inter-
nal heat generation that includes design-dependent effects. First,
the concept of basic topology optimization theory based on the
homogenization method is briefly discussed. The objective func-
tion of the optimization problem is then formulated using the con-
cept of total potential energy, so that the optimization problems
can be treated as objective function maximization problems for
both Neumann and Dirichlet type boundary conditions. Next, a
newly developed method for dealing with design-dependent
effects that pertain to heat convection and internal heat generation
loads is explained. In this method, the heat transfer boundaries
between material and void regions that emerge in the fixed design
domain are extracted using a Hat function so that the heat transfer
coefficients can be set on these boundaries. The shape dependen-
cies of the heat transfer coefficients in the formulation are also dis-
cussed, and a method to represent such shape dependencies is
developed via a surrogate model using the Radial Basis Function.
An optimization algorithm is constructed using the Finite Element
Method and Sequential Linear Programming. Finally, several
numerical examples that address thermal problems are provided
to confirm the usefulness of the proposed method.
2. Formulation of topology optimization method for thermal
problems

Here we briefly discuss a topology optimization method for
thermal problems with generic thermal boundary conditions such
as heat flux, internal heat generation and heat convection loads
that include design-dependent effects, based on the homogeniza-
tion method. In this method, continuous approximation of material
distribution is assumed for implementation.

2.1. Basic topology optimization theory based on the homogenization
method

In this research, we introduce the homogeneous design method
(HDM) theory in which a continuous material distribution is
assumed, using a continuous interpolation function at each node.

The key idea of the topology optimization method is the intro-
duction of a fixed design domain D that includes the original design
domain Xd and the following characteristic function.

vX�ðxÞ ¼
1 if x 2 Xd

0 if x 2 D nXd

�
ð1Þ

where x denotes a position in the extended design domain D. Using
this characteristic function vX and the extended design domain D,
the original structural problem is replaced by a material distribu-
tion problem incorporating an thermal conduction tensor vX

j, in
the extended design domain D, where j is the thermal conduction
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tensor in the original design domain Xd. Since this type of charac-
teristic function is highly discontinuous, namely, lies in L1(D), some
regularization or smoothing technique must be introduced for the
numerical treatment. A homogenization method is used to carry
out the relaxation of the design domain by introducing microstruc-
tures to represent the composite material status. In two scale mod-
eling, which is based on the asymptotic homogenization method,
microstructures are continuously distributed almost everywhere
in the extended design domain D, and this status must hold even
after the finite element discretization. In this work, the HDM meth-
od is applied to temperature diffusivity optimization problems. In
the conventional HDM [4–7] and also SIMP [8,9] methods, however,
the design variables are approximated by piecewise constants in the
finite element implementation, and a discontinuous material distri-
bution over the elements can be the cause of numerical instability
such as checkerboards. To overcome such problems, several meth-
ods have been proposed, such as the use of filtering schemes
[23,24] and the perimeter control method [25]. Although the filter-
ing schemes and the perimeter control method are now popular
means for avoiding these numerical problems, these methods cru-
cially depend on the use of artificial parameters for which there
are no rational guideline to follow when determining the appropri-
ate parameter values required for additional constraints. To over-
come the above problems and maintain procedural consistency,
Matsui and Terada [26] proposed a topology optimization method
with assumed continuous approximation of material distribution,
in which the design variable r(x) is expressed as

rðxÞ � rhðxÞ ¼ NrðxÞR ¼
Xn

i¼1

Nr
i Ri ð2Þ

where rh stands for the discretized quantity using the finite element
method (FEM), Nr is a vector whose components are Nr

i (i = 1,���,n), R
is a vector of nodal design variables whose components are Ri

(i = 1,���, n) and n is the total number of nodes in the fixed design
domain D, which is also the same as the number of design variables
in this formulation. Using the above formulation, the design vari-
ables can maintain the C0-continuity over the domain. In this
research, the above formulation is employed for the approximation
of design variables. A bilinear interpolation function is used as Nr

i ðxÞ
in the case of four-node quadrilateral elements, and because it pre-
serves the C0-continuity. Note that since the discrete material den-
sities of the design variables are computed at each node in this
formulation. Also note that a similar formulation based on the SIMP
method was presented by Rahmatalla and Swan [27].

Fig. 1 shows the microstructure used for the relaxation of the
design domain in the two-dimensional problem. As shown, the micro-
structure is square and the design variable is a geometrical parameter
r that must respectively be 1 or 0 for void or material to be present.
r

1y

Fig. 1. Microstructure used for the relaxation of design domain.
0 6 r 6 1 ð3Þ

Note that this microstructure has an isotropic response and is suffi-
cient for our design problems.

As we explained above, the homogenization method is intro-
duced to compute the physical properties in the global and local
sense using multi-scale modeling and asymptotic expansion. Using
this method, the homogenized or average physical properties in
the global or macroscopic sense are obtained by the homogeniza-
tion procedure using a microstructure defined in the local or
microscopic coordinate. See details in [28,29].

Here we briefly explain how the homogenized thermal conduc-
tion tensor jH is obtained. First, a characteristic temperature n is
obtained by solving the following linearized equilibrium equation
in the microscopic coordinate system:Z

Y
jðyÞry

�TrynðyÞdy ¼
Z

Y
jðyÞry

�Tdy 8�T 2 Vy ð4Þ

where Vy is the admissible space defined in a unit cell Y such that

Vy ¼ f�TðyÞj�Ti 2 H1ðYÞ; �TðyÞ : Y � periodic on Yg ð5Þ

where H1(Y) indicates a Sobolev space.
Using the above characteristic temperature n, the homogenized

thermal conduction tensor jH with respect to design variable de-
fined in the local or microscopic coordinate system is obtained by

jHðxÞ ¼ 1
jY j

Z
Y

jðyÞðI �rynðyÞÞdy ð6Þ

where j(y) and »y respectively indicate the thermal conduction
tensor in the microscopic sense and the differential operator with
respect to the y coordinate that indicates a local coordinate defined
in the microstructure as shown in Fig. 2, and |Y| indicates the area of
the unit cell. Note that the macroscopic variables are defined almost
everywhere in the macro-structure and obtained as the volume
average of the microscopic physical properties, which are evaluated
by solving microscopic problems. That is, a microscopic problem is
defined at each material point in macro-scale. Thus the relationship
between a unit cell design variable and the homogenized thermal
conduction tensor is established.

2.2. Formulation of thermal problems

In this section, we formulate the generic temperature diffusivity
optimization problems for linear thermal conductors.

Here we consider a two-dimensional steady-state heat conduc-
tion problem. Suppose that an arbitrary linear thermal conductor
occupies domain Xd with boundary C and thermal conduction ten-
sor is jH(x), derived from Eq. (6). Then the temperature field T
within the domain is governed by the following equation.

r � ðjHrTÞ þ b ¼ 0 ð7Þ

where b indicates the internal heat generation in Xd. With ~T repre-
senting the virtual temperature field, the equilibrium equation of a
D

Fixed design domain

x

y

Y in y

Fig. 2. Two-scale modeling for the periodic porous body.
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linear thermal conductor can then be rewritten as the following
weak form, through the principle of virtual temperature [30]:Z

Xd

r~TjHrTdX�
Z

C

~TjH @T
@n

dCþ
Z

Xd

b~TdX ¼ 0 ð8Þ

We consider the boundary conditions for a linear thermal con-
ductor whose temperature field is denoted as T. We also impose a
temperature T = 0 �C on CT, T = c(x) – 0 �C on Cc, heat flux q on Cq

and a heat convection load consisting of heat transfer coefficients h
and ambient temperature T = Tamb on Ch. The equilibrium equation
of a linear thermal conductor is then formulated as follows,

aðT; ~TÞ þ Lcð~TÞ ¼ Lð~TÞ 8~T 2 V ð9Þ

where aðT; ~TÞ is a bilinear form such that

aðT; ~TÞ ¼
Z

Xd

r~TjHrTdXþ
Z

Ch

~ThTdC ð10Þ

and

Lcð~TÞ ¼
Z

Cc

r~TjHrcdC ¼
Z

Cc

qreactð~TÞcdC ð11Þ

Lð~TÞ ¼
Z

Cq

q~TdCþ
Z

Xd

b~TdXþ
Z

Ch

hTamb
~TdC ð12Þ

qreact indicates the reaction of the heat flux which acts on Cc, and V
is a subset of a Sobolev space in which admissible temperatures are
defined as follows:

V ¼f~TðxÞj~Ti 2H1ðXdÞ; and ~T ¼0 on CT
~T ¼ c on Ccg ð13Þ

Next, we formulate the objective function that will be used
when formulating the thermal conductor design problems. Here
we define the mean temperature, which corresponds to the mean
compliance in the structural problems.

Tmean ¼
Z

Cq

qTdCþ
Z

Xd

bTdXþ
Z

Ch

hðTamb � TÞTdC

þ
Z

Cc

qreactðTÞcdC ð14Þ

For the case where only the heat flux boundary condition is consid-
ered, the mean temperature is expressed as;

Tmean ¼
Z

Cq

qTdC ð15Þ

Then, temperature at Cq is minimized by minimizing the mean
temperature, and consequently, the temperature diffusion is maxi-
mized. On the other hand, for the case where a fixed temperature on
boundary Cc is considered, mean temperature is written as;

Tmean ¼
Z

Cc

qreactðTÞcdC ¼ aðT; TÞ ð16Þ

In this case, the reaction heat flux qreact is maximized for given tem-
perature at Cc by maximizing the mean temperature, and as a result,
temperature diffusion is maximized. Thus, when the mean tempera-
ture is used as an objective function, it is difficult to determine
whether the mean temperature should be minimized or maximized
since this determination crucially depends on the boundary setting.
To overcome this problem, we formulate the total potential energy
as the objective function as follows, based on the concept of the total
potential energy used in the usual stiffness maximization problems.

FðTÞ ¼ 1
2

aðT; TÞ � LðTÞ ð17Þ

Using the above formulation, the optimization problems can be
treated as an objective function maximization problem for both
Neumann (i.e., heat flux boundary) and Dirichlet (i.e., temperature
boundary) type boundary conditions, so we can formulate the
optimization problem for maximization of temperature diffusivity
under the volume constraint of the materials as

Maximize FðTÞ ð18Þ

subject to

g ¼
Z
ð1� r2ÞdX 6 Xs and Eqs: ð3Þ and ð9Þ ð19Þ

where Xs indicates the upper limit of the volume constraint. Thus,
we can minimize the temperature in the designed thermal conduc-
tors by maximizing the total potential energy, which maximizes
temperature diffusivity in the thermal conductor.

2.3. Formulation of design-dependent internal heat generation loads

Since the amount of internal heat generation usually depends
on the material density, the quantity of internal heat generation
changes as the material density changes. Here, we assume that that
the internal heat generation loads are proportional to the material
density. Then, the design-dependent internal heat generation loads
are formulated using the characteristic function vX in the domain
as follows:Z

Xd

b~TdX ¼
Z

D
vXb~TdX ð20Þ

where b is the internal heat generation at point x in the fixed design
domain D.

By applying the relaxation scheme for the design domain, the
internal heat generation b is expressed as

bðxÞ � bhðxÞ ¼ b0ð1� rh2Þ ð21Þ

where bh indicates the discretized internal heat generation and b0

indicates the internal heat generation value per unit volume. In
the case of solid areas, a density of 1 is implied.

Using the above equation, the internal heat generation loads can
change in response to shape changes because the internal heat gen-
eration loads are expressed as a function of design variables r(x).

2.4. Formulation of design-dependent heat convection loads

In conventional topology optimization methods, due to the
inability to precisely set structural boundaries in the fixed design
domain, boundary conditions such as heat transfer boundary
conditions, which should be set on the structural boundaries,
cannot be precisely represented. To overcome this issue, we con-
struct a new method for dealing with heat transfer boundaries
between material and void regions that emerge in the fixed
design domain.

Topology optimization yields optimal configurations as a mate-
rial density distribution, and areas of intermediate density (e.g.,
gray scale areas) often emerge during the optimization procedure.
Such areas can be considered as boundaries between solid and void
regions, and to extract these structural boundaries, we introduce
the following Hat function (a smeared-out Hat function) as a func-
tion of the element density qe calculated using the nodal densities
in each element.

HðqeÞ¼

0 qe <qlower�e
1
2þ

ðqe�qlower Þ
2e þ 1

2p sin pðqe�qlowerÞ
e

n o
qlower�e<qe <qlowerþe

1 qlowerþe<qe <qupper�e
1
2�

ðqe�qupper Þ
2e � 1

2p sin pðqe�qupperÞ
e

n o
qupper�e<qe <qupperþe

0 qupperþe<qe

8>>>>>>>><
>>>>>>>>:

ð22Þ
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where qlower and qupper are respectively the lower and upper limit
values for the extraction of boundaries for setting the heat convec-
tion loads, and qe < qlower for voids, qupper < qe for material, and
qlower < qe < qupper for structural boundaries, where e in the above
equation determines the size of the bandwidth of numerical smear-
ing in the Hat function, to avoid numerical singularities.

Next, we set the heat transfer coefficients on all nodes in the
finite element model and arrange them uniformly over the entire
design domain using the shape function, as shown in Fig. 3(a).
Then, using the smeared-out Hat function, heat transfer coeffi-
cients can be set on the structural boundaries extracted by Eq.
(22), as shown in Fig. 3(b). The heat transfer coefficients are
approximated as:

hðxÞ � hhðxÞ ¼ HðqeÞM
rðxÞh ¼ HðqeÞh0

Xn

i¼1

Mr
i ðxÞ ð23Þ

where hh and h0 stand for the discretized heat transfer coefficient
and the nodal heat transfer coefficient, respectively. Mr is a vector
whose components are Mr

i (i = 1,���,n), h is a vector of the nodal heat
transfer coefficients, all of whose components are h0. Here a bilinear
interpolation function is also used as Mr

i (x) in the case of four-node
quadrilateral elements. Thus, the heat transfer coefficients can be
set on the structural boundaries while maintaining the C0-continu-
ity on the structural boundaries.

2.5. Shape dependencies concerning heat transfer coefficients

Formulations of the heat transfer coefficient have been
derived experimentally and theoretically for various cases. For
example, Eqs. (24) and (25) show the Dittus and Boelter formu-
lation for heat transfer in a pipe containing a turbulent fluid
[31]. This formulation is valid for the range of 104 < Re < 105

and 1 < Pr < 10.
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Fig. 3. Schematic view of setting method of heat transfer coefficients.
Nu ¼ 0:023Re0:8Pr0:4 and ð24Þ

h ¼ kfluid

d
Nu ð25Þ

where Nu, Re, Pr and d indicate the Nusselt, Reynolds and Prandtl
numbers, and diameter of the pipe, respectively. As shown in these
equations, heat transfer coefficients are strongly correlated with
fluid velocity, so it is important that the influence of fluid velocity
be considered when setting them. In addition to structural changes,
heat transfer coefficients must also be considered changeable in
response to structural changes, due to shape dependencies. In pre-
vious work [20–22], only the structural boundary information is
extracted, and the shape dependencies of the heat transfer coeffi-
cients were not considered, due to the complexity of heat transfer
phenomena that are strongly correlated with fluid–structure inter-
actions. One possible way to examine such dependencies would be
to apply coupled numerical fluid-thermal analysis, but this is com-
putationally intensive, and at early design stages, simplified models
enable more rapid development of basically sound designs, which is
the desired goal. We therefore propose a new scheme for updating
the heat transfer coefficients in response to structural changes dur-
ing the optimization, using a surrogate model that considers the
relationships between shape and heat transfer coefficients, as
described below.

First, to quantify the relationships of shape and heat transfer
coefficients, we conduct numerical fluid analysis for models having
different arrangements of fins. In our research, three models are
constructed, CASE (1)–(3) shown in Fig. 4(1), all of which have
the same fin height, but incorporate different periodic spacing.
Fig. 4(2) shows the numerical fluid simulation model. Fins which
are defined in Fig. 4(1) are positioned at the bottom middle of sim-
ulation model. We assume that the fluid temperature is 0 �C with a
1 m/s velocity over the inlet surface shown in Fig. 4(2), and the
wall temperature is set to a uniform 20 �C. The FLUENT (ANSYS,
Inc.) software package is used for the fluid analysis [32]. In this
analysis, approximately 3 million tetrahedral elements are used.
(1) Numerical fluid simulation models of CASE (1), (2) and (3) 

(2) Numerical fluid simulation models in Fluent 
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Fig. 4. Setting of numerical simulation model.
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Next, we introduce parameters relating to the heat transfer
coefficients. As shown in Fig. 5, circles with radius ra and their cen-
ters located on the fin boundaries are set, defining the areas A that
are the intersection of the circle and the fin profile, yielding a den-
sity q defined by Eq. (26) for each evaluation point. ra is assumed to
0.05, which is determined as a half of the shortest fin period among
the models shown in Fig. 4(1).

q ¼ A
pr2

a
ð26Þ

Furthermore, the fin tips are regarded as being the points of lowest
density on the fin boundaries. According to Eq. (26) and Fig. 4(1),
fins with shorter periods will have lower density at the fin tips, so
the fin tip density is used as the fin period P, and it is set as follows.

P ¼ minq on Cfin ð27Þ

where Cfin indicate the fin boundaries.
Next, a surrogate model is constructed with respect to density q

and a period P calculated according to Eqs. (26) and (27). In our
research, this surrogate model is constructed using the Radial Basis
Function (R.B.F) [33], where linear-splines are used as a basis function
in the R.B.F. The heat transfer coefficients can then be expressed as,

h0ðzÞ ¼
Xm

j¼1

ajgjðzÞ þ amþ1 ð28Þ

where z = (q,P)T, gj(z) � g(||z � zj||) and m indicate the position of
sampling points, the basis function and the number of sampling
points, respectively, and values of aj (j = 1, 2,���,m + 1) are deter-
mined by solving the following equations.Xm

j¼1

ajgjðziÞ þ amþ1 ¼ hi ðj ¼ 1;2; � � �;mÞ ð29Þ

Xm

j¼1

aj ¼ 0 ð30Þ

where hi indicates the value of the heat transfer coefficient at sam-
pling point i.

Fig. 6 shows the surrogate model constructed using Eqs. (26)–
(28). Heat transfer coefficients are normalized to 1 for the largest
value and the fin period P is also normalized to 1. As shown in this
figure, the highest heat transfer coefficient h0 is observed at the
lowest density point, which lies at the fin tips, and the heat transfer
coefficient is correspondingly minimized at the bottom of fin
where the density is highest. Heat transfer coefficient in areas of
high density and short fin period increases slightly as the fin period
decreases further, due to the extrapolation of sampling data in the
Radial Basis Function.

Using this surrogate model, the basic heat transfer coefficient is
rewritten as follows,

hðxÞ � hhðxÞ ¼ HðqeÞM
rðxÞh ¼ HðqeÞ

Xn

i¼1

Mr
i ðxÞh0ðqi; PÞ ð31Þ
where qi and P respectively indicate the i-th node density and fin
period, both of which are evaluated based on Eqs. (26) and (27),
using the material densities obtained in the topology optimization.

2.6. Optimization algorithm

Fig. 7 shows a flowchart of the optimization. In the first step, the
homogenized thermal conduction tensor jH is computed using the
FEM. In the second step, the equilibrium (9) is solved using the
FEM and nodal temperature vector T is obtained. In the third step,
the objective function and volume constraint are calculated. The
design variables Ri (i = 1, 2,���,n) are bounded according to Eq. (32)
below, to avoid singularities in the FE analysis, although these
design variables are theoretically bounded by Eq. (3).
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0 6 Ri 6 rupp < 1 ð32Þ
where rupp is the upper bound of the design variables, and is set to a
sufficiently large number, but less than one. In the fourth step, the
sensitivities of the objective function and volume with respect to
design variables are computed if the objective function has not con-
verged. In the fifth step, the design variables are updated using SLP.
The advantage of using SLP is that almost all optimization problems
can be solved rather quickly, without setting artificial parameters.

After updating the design variables using SLP, the design-
dependent heat transfer coefficients are set according to Eq. (23)
on the structural boundaries extracted by the smeared-out Hat
function. In cases where heat transfer coefficient dependencies
with respect to shape are taken into account, the coefficients are
updated using Eq. (31), and the optimization procedure is then
repeated from the first step.

2.7. Design sensitivity analysis

Let K, Kh, q, Q and H respectively be the thermal conduction
matrix, heat transfer matrix, heat flux vector, internal heat gener-
ation vector and heat transfer vector in the extended design
domain D after FE discretization is carried out. Then, equilibrium
equation (9) and the objective function F in Eq. (17) can be respec-
tively rewritten as

ðK þ KhÞT ¼ qþ Q þ H ð33Þ

F ¼ 1
2

TT KT þ 1
2

TT KhT � TTðqþ Q þ HÞ ð34Þ

The sensitivity of the objective function with respect to the i-th
design variable Ri is obtained by

@F
@Ri
¼1

2
@TT

@Ri
KT þ TT @K

@Ri
T þ TT K

@T
@Ri

 !

� 1
2

@TT

@Ri
KhT þ TT @Kh

@Ri
T þ TT Kh

@T
@Ri

 !

� 1
2
@TT

@Ri
ðqþ Q þ HÞ � TT @ðqþ Q þ HÞ

@Ri
ð35Þ

On the other hand, differentiating the equilibrium equation (9) with
respect to Ri yields

@ðK þ KhÞ
@Ri

T þ ðK þ KhÞ
@T
@Ri
¼ @ðqþ Q þ HÞ

@Ri
ð36Þ

Since matrix K is symmetric, by substituting Eqs. (33) and (36) into
Eq. (35) the sensitivity of objective function can be rewritten as

@F
@Ri
¼ 1

2
TT @ðK þ KhÞ

@Ri
T � TT @ðqþ Q þ HÞ

@Ri
ð37Þ

where the second term in the right-hand portion of Eq. (37) corre-
sponds to a design-dependent effect.
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Fig. 9. Optimal configurations of design problem 1. (a) L1 = 0.5, L2 = 0.0, L3 = 0.5, (b)
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3. Numerical examples

Numerical examples for the heat flux, internal heat generation,
and heat convection loads for 2-dimensional problems are pre-
sented to confirm the utility of the proposed method. In all cases,
the isotropic material has a thermal conductivity 50 W/mK and
the initial configuration of the fixed design domain has a uniform
microstructure distribution where Ri (i = 1,���,n) is set to 0.9.

3.1. Effect of heat flux boundary conditions upon thermal conductor

Fig. 8 shows the design domain for example problem 1. As
shown in this figure, the shape of the design domain is a
5 m � 5 m square, and a temperature T = 0 �C is imposed at bound-
aries CT. Furthermore, a heat flux of 1 W/m2 is also applied to
boundary Cq. Here, we examine the relationship between the
length of the boundaries shown in Fig. 8(a)–(d) and the optimal
configurations. The upper limit of the volume constraint Xs is set
to 30% of the entire design domain and the optimization is carried
out using 50 � 50 elements.

Fig. 9 shows the optimal configurations. No checkerboards
emerged in any of the figures, and clear, optimal configurations
are obtained in every case. In Fig. 9(a), the heat flux is applied at
the upper right corner, and the bottom corner of the left side is
assumed to be at T = 0 �C. The optimal configuration then becomes
a straight-line structure that extends from the upper right corner
to lower left corner. In contrast, when CT is expanded as shown
in Fig. 9(b), the optimal configuration is expanded toward the new-
ly specified temperature boundary, as shown in Fig. 9(b). Further-
more, if the temperature boundary is expanded to an entire side of
the square design domain, as shown in Fig. 9(c), the optimal config-
uration becomes a curved shape, due, we assume, to the combined
influence of the distant temperature boundary and the closer fixed
temperature boundary. Fig. 9(d) shows the optimal configuration
when the heat flux boundary Cq is expanded to the entire side of
the square design domain. In this case, a shape deploys along the
heat flux boundary and is influenced by the temperature boundary.
From a physical point of view, it would be better if the branch in
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the bottom right corner of the void region in Fig. 9(b) and (c) were
as short and thick as possible for this problem. We conjecture that
the discrepancy between this ideal and the numerical result is due
to local optimality encountered by our optimization method.

3.2. Effect of design-dependent internal heat generation loads upon
thermal conductor

Fig. 10 shows the design domain for example problem 2. As
shown in this figure, the shape of the design domain is a
1 m � 1 m square, and a temperature T = 0 �C is imposed at bound-
ary CT. An insulator condition is also applied at boundary Cq, and
an internal heat generation output of 0.01 W/m2 is uniformly
applied over the entire design domain. The upper limit of the vol-
ume constraint Xs is 40% of the entire design domain and the opti-
mization is carried out using 200 � 200 elements. The optimization
is performed with and without design variable dependencies for
the internal heat generation, to examine the influence that design
variable dependency has on the optimal configurations.

Fig. 11 shows a comparison of the optimal configurations in
cases with and without design variable dependency, with respect
to the internal heat generation. As shown in Fig. 11(a), in the case
where we assume that the internal heat generation loads ignore
design dependencies, small fin shapes emerge near the diagonal
extending to boundary CT in the fixed design domain, to diffuse
the internal heat generation existing over the entire design
domain. On the other hand, when design-dependent internal heat
generation loads are taken into account, the material density as
well as the internal heat generation values become small in the
fixed design domain at locations far from boundary CT, and the
optimal configuration displays the relatively small fin shape shown
in Fig. 11(b). These results show that design variable dependencies
play a significant role in the optimal configuration results with
respect to internal heat generation, and that our proposed method
Fig. 11. Optimal configurations of design problem 2. (a) without dependency on
design variables, (b) with dependency on design variables.
can yield optimal structural configurations which correlate well
with the amount of actual internal heat generation.

3.3. Effect of design-dependent heat convection loads upon thermal
conductor

Fig. 12 shows the design domain for example problem 3. The
boundary CT in the design domain, a 5 m � 5 m square, is imposed
at T = 0 �C, and a heat flux of 1 W/m2 is applied at boundary Cq.
Heat convection loads consisting of heat transfer coefficients
h0 = 0.1 W/m2 K and ambient temperatures Tamb = 0 �C, are set over
the entire design domain as shown in Fig. 12(b). The upper limit of
the volume constraint Xs is set to 30% of the entire design domain,
qlower and qupper in the smeared-out Hat function are set to 0.3 and
0.9 respectively, and parameter e in the smeared-out Heaviside
function is set to 0.001, which is based on our numerical examina-
tion. The optimization is carried out using 200 � 200 elements.

In this example, until the maximum material density exceeds
qlower (we call this iteration number NT, optimization proceeds
using the boundary condition shown in Fig. 12(a), i.e., imposed
temperature is in effect. From the next iteration, the temperature
constraint on CT is removed and Eq. (22) is applied to extract the
design-dependent heat convection boundaries. In this example,
shape dependencies with respect to heat transfer coefficients are
not considered. Fig. 13(1) shows the history of the optimal config-
urations during the optimization. Checkerboards are absent, and
many small fins are present, which diffuse heat in the thermal con-
ductor. Fig. 13(2) and (3) show the history of temperature distribu-
tion and temperature at top right corner of the design domain,
where the thermal conductor is subject to the highest temperature.
As shown in these figures, the temperature in a configuration
decreases as the optimization process is carried out.

Next, we examine the reason for removing the imposed tem-
perature constraint at an intermediate stage of the optimization
process. Fig. 14(1) shows the material distributions for cases
where the imposed temperature constraint was removed after
respective numbers of iterations had been carried out, (a)
NT = 15, (b) NT = 30, (c) NT = 50, (d) NT = 100, respectively. The
optimal configurations are shown in Fig. 14(2). In our proposed
method, a non-uniform material distribution is required in order
to extract structural boundaries. However, as shown in Fig. 14(2)
(c) and (d), when an imposed temperature constraint is main-
tained until clear configurations emerge, the optimal configura-
tions are strongly affected by the configuration when the
temperature constraint is removed. Since elements whose mate-
rial density is within qlower < qe < qupper are regarded as the set of
the structural boundaries to be extracted by the Hat function, we
remove the imposed temperature constraint after the iteration
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where the updated material density value exceeds qlower, which
is set to 0.3 in our research.

Next, the influence that values of heat transfer coefficient and
thermal conductivity have upon the optimal configurations is inves-
tigated. Fig. 15 shows the results of examples that use the following
combinations of 3 heat transfer coefficients h0 = 0.01 W/m2 K;
h0 = 0.1 W/m2 K; h0 = 1.0 W/m2 K and 2 thermal conductivities
k = 5.0 W/mK; 50 W/mK. With thermal conductivity fixed, the opti-
mal configurations show that lower heat transfer coefficients tend
to increase the length of heat transfer boundary Ch and higher heat
transfer coefficients tend to minimize the distance from the heat flux
boundary Cq. Thus, when considering design-dependent heat con-
vection loads, it is important to recognize that the optimal configura-
tions are strongly influenced by the heat transfer coefficient values.

Here we explain why such optimal configurations are obtained,
using a one-dimensional steady-state heat conduction model with
heat convections. We assume that the heat flux through the struc-
ture is Q and that the heat transfer coefficient and ambient temper-
ature for the high and low temperature fluid sides are respectively
h1, tf1, and h2, tf2, and that the heat transfer area is S. The heat flux
through the structure is then given as

Q ¼ Kðtf 1 � tf 2ÞS ð38Þ
where K indicates the coefficient of heat transmission shown below.

K ¼ 1
ð1=h1Þ þ ðl=kÞ þ ð1=h2Þ

ð39Þ

where l and k indicate the thickness of the structure and its thermal
conductivity, respectively. Eq. (38) shows that larger values of S and
K are necessary if the amount of heat transfer through the structure
is to be increased. In Eq. (39), K depends on l, k and h, therefore the
length of the optimal configuration that can maximize temperature
diffusivity depends on the value of the heat transfer coefficients
when the material is selected. Increasing the heat transfer area is
an effective means for increasing the release of heat, so a profuse
array of fins emerges in the fixed design domain to minimize tem-
perature, as shown in Fig. 15. If, however, a higher heat transfer
coefficient value is set, the optimal configuration has a much larger
number of much shorter fins, to increase the heat transfer area
while minimizing the distance from the corner heat source. This
minimizes the contribution of l/k to K.

The value of K depends on the relation between the heat
transfer coefficients and the thermal conductivity. Therefore,
the same optimal configurations are obtained as shown in
Fig. 15, as long as the ratio of the heat transfer coefficient to
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the thermal conductivity is preserved. The validity of our
proposed method is confirmed, since identical results are
obtained for a given ratio of heat transfer coefficient to thermal
conductivity.

3.4. Heat pipe design problem using topology optimization

The next example is a pipe design problem. Fig. 16 shows the
design domain for design problem 4, which is a 5 m � 5 m square
with an imposed temperature T = 0 �C at PT, a heat flux of 1 W/m2

applied to boundary Cq and the other sides insulated. Heat convec-
tion loads which consist of heat transfer coefficients h0 and ambi-
ent temperature Tamb, are set on all nodes of the design domain.
The upper limit of the volume constraint Xs is set to 30% of the
entire design domain. Computations are carried out using a single
quadrant of the model, as shown in Fig. 16, to save calculation
time, and the optimization is carried out using 200 � 200
elements.
Fig. 17 shows the optimal configurations. Material is distributed
along the four edges that are the heat convection boundaries. The
thinner structures more effectively dissipate heat, but when heat
transfer coefficient values are comparatively low, corresponding
to lower fluid velocities, many small fins are generated, expanding
the effective area for heat transfer.

Here we interpret the optimal configurations using Eq. (40),
which denotes the Biot number. If we set a lower heat transfer
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coefficient which corresponds to a smaller Biot number, then a
larger value of l is required to increase the amount of heat trans-
ferred from the surface, because the heat transfer coefficient is
already set as the boundary condition, with the result that many
small fins are generated to expand the heat transfer boundary, as
shown in Fig. 17(c). On the other hand, if we set a higher heat
transfer coefficient, a smaller value of l, equivalent to a higher ther-
mal conductivity setting in Eq. (40), is required to improve the
release of heat in a structure such as shown in Fig. 17(a).

Bi ¼ hl
kmaterial

ð40Þ
3.5. Optimal configuration considering shape-dependent heat transfer
coefficients

In this example, we consider shape dependencies with respect
to the heat transfer coefficients. Optimization is started from the
final step of design problem 3 in Fig. 13(1). From the next step,
the shape dependencies with respect to the heat transfer coeffi-
cients are considered, based on Eq. (31).

Fig. 18 shows the optimization history and optimal configura-
tions considering shape-dependent heat transfer coefficients. As
shown in Fig. 18, in high-density areas at the fin bases, the val-
ues of the heat transfer coefficients are low, and voids in the
near neighborhood are replaced with material as the optimiza-
tion procedure is iterated. On the other hand, in low-density
areas at the tips of the fins, heat transfer coefficient values
become high, and thermal conductivity can be exploited to
improve the diffusion of heat. The result, as seen in the optimal
configuration, is that a large number of short fins maximizes the
heat transfer area and minimizes the distance from the heat
source. The optimal configuration obtained shown in Fig. 18 dif-
fers dramatically from the result shown in Fig. 13(1), where
shape dependencies with respect to heat transfer coefficients
were ignored. Thus, for temperature diffusion optimization prob-
lems that include heat transfer boundary conditions, consider-
ation of shape dependencies with respect to heat transfer
coefficients is indispensable.
4. Conclusions

In this paper, we developed a structural optimization method
for the design of thermal conductors that aim to maximize temper-
ature diffusivity. We obtained the following results.
(1) The homogenization design method was extended to ther-
mal problems, in which continuous material distribution is
assumed using C0-continuous interpolation functions in the
fixed design domain.

(2) The maximization problem to maximize temperature diffu-
sivity was formulated using an objective function of total
potential energy that can be treated as maximization prob-
lems for both Neumann and Dirichlet type boundary
conditions.

(3) Design-dependent internal heat generation loads were for-
mulated as a function of design variables, and also design-
dependent heat convection loads were formulated using
material density in elements and a Hat function, to extract
the boundaries of the structure being optimized so that heat
transfer boundary conditions can be set.

(4) A new method was developed for dealing with shape-depen-
dencies with respect to heat transfer coefficients in the
topology optimization scheme, using a surrogate model.

(5) An optimization problem was constructed based on the opti-
mization formulation, incorporating the above objective
function and sequential linear programming (SLP).

(6) Several numerical examples were provided to examine the
characteristics of the optimal configurations for typical ther-
mal boundary conditions. It was confirmed that the pro-
posed method provides checkerboard-free optimal
configurations in all examples. It was also confirmed that
design-dependent and shape-dependent effects upon inter-
nal heat generation and heat convection loads play signifi-
cant roles in the design of thermal conductors, and that
the proposed method can obtain solutions that successfully
exploit actual heat transfer and conduction phenomenon.
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